D-optimal designs for polynomial regression models through origin
Zhide Fang
Statistics & Probability Letters, 2002, vol. 57, issue 4, 343-351
Abstract:
In this article we consider D-optimal designs for polynomial regression models with low-degree terms being missed, by applying the theory of canonical moments. It turns out that the optimal design places equal weight on each of the zeros of some Jacobi polynomial when the number of unknown parameters in the model is even. The procedure and examples of finding the optimal supports and weights are given when the number of unknown parameters in the model is odd.
Keywords: Polynomial; regression; Jacobi; polynomials; Canonical; moments; Hankel; determinant; Regression; through; the; origin (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(02)00085-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:57:y:2002:i:4:p:343-351
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().