Bayesian nonparametric point estimation under a conjugate prior
Xuefeng Li and
Linda H. Zhao
Statistics & Probability Letters, 2002, vol. 58, issue 1, 23-30
Abstract:
Estimation of a nonparametric regression function at a point is considered. The function is assumed to lie in a Sobolev space, Sq, of order q. The asymptotic squared-error performance of Bayes estimators corresponding to Gaussian priors is investigated as the sample size, n, increases. It is shown that for any such fixed prior on Sq the Bayes procedures do not attain the optimal minimax rate over balls in Sq. This result complements that in Zhao (Ann. Statist. 28 (2000) 532) for estimating the entire regression function, but the proof is rather different.
Keywords: Nonparametric; regression; Point; estimation; Bayesian; procedure; Gaussian; prior; Optimal; rate (search for similar items in EconPapers)
Date: 2002
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(02)00097-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:58:y:2002:i:1:p:23-30
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().