Asymptotic expansions of densities of sums of random vectors without third moment
Liang Peng
Statistics & Probability Letters, 2002, vol. 58, issue 2, 167-174
Abstract:
Asymptotic expansions of densities of the normalized sums of random vectors with at least finite third moment have been studied extensively (Normal Approximation and Asymptotic expansions. Wiley, New York.). In this note, we obtain the asymptotic expansions of densities of the normalized sums of i.i.d. random vectors with regularly varying density with index between 4 and 5, which implies that third moment is infinite.
Keywords: Asymptotic; expansion; Characteristic; function; Potter; bounds; Regular; variation (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(02)00121-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:58:y:2002:i:2:p:167-174
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().