Perturbation of functional tensors with applications to covariance operators
Yves Romain
Statistics & Probability Letters, 2002, vol. 58, issue 3, 253-264
Abstract:
In this paper, results on the perturbation theory of symmetric operators are given. They concern the tensor extension of a perturbation problem for operators as studied by Fine (Statistics 18 (1987) 401). We consider functional definitions of the tensor product, sum and difference of operators and we study the eigenelement expansions of their perturbations. We show that the main result may be summarized in a simple form called "a perturbation rule for tensor operators". Finally, we indicate briefly how to apply these properties in a multivariate statistical sampling framework.
Keywords: Tensor; product; Random; perturbation; theory; Covariance; operator; Eigenvalues; perturbation; Eigenvectors; perturbation; Eigenprojectors; perturbation (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(02)00104-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:58:y:2002:i:3:p:253-264
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().