Estimation of frequencies in presence of heavy tail errors
Swagata Nandi,
Srikanth K. Iyer and
Debasis Kundu
Statistics & Probability Letters, 2002, vol. 58, issue 3, 265-282
Abstract:
In this paper, we consider the problem of estimating the sinusoidal frequencies in presence of additive white noise. The additive white noise has mean zero but it may not have finite variance. We propose to use the least-squares estimators or the approximate least-squares estimators to estimate the unknown parameters. It is observed that the least-squares estimators and the approximate least-squares estimators are asymptotically equivalent and both of them provide consistent estimators of the unknown parameters. We obtain the asymptotic distribution of the least-squares estimators under the assumption that the errors are from a symmetric stable distribution. We propose different methods of constructing confidence intervals and compare their performances through Monte Carlo simulations. We also discuss the properties of the estimators if the errors are correlated and finally we discuss some open problems.
Keywords: Sinusoidal; signals; Consistent; estimators; Stable; distributions; Confidence; intervals (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(02)00109-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:58:y:2002:i:3:p:265-282
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().