Approximations for a conditional two-dimensional scan statistic
Jie Chen and
Joseph Glaz
Statistics & Probability Letters, 2002, vol. 58, issue 3, 287-296
Abstract:
Let Xi,j,1[less-than-or-equals, slant]i[less-than-or-equals, slant]n1,1[less-than-or-equals, slant]j[less-than-or-equals, slant]n2, be a sequence of independent and identically distributed nonnegative integer valued random variables. The observation Xi,j denotes the number of events that have occurred in the i,jth location in a two dimensional rectangular region R. For 2[less-than-or-equals, slant]mi[less-than-or-equals, slant]ni-1, i=1,2, the two dimensional discrete scan statistic is defined as the maximum number of events in any of the m1 by m2 consecutive rectangular windows in that region. Conditional on the total number of events that have occurred in R, we refer to this scan statistic as the conditional two-dimensional scan statistic. Two-dimensional scan statistics have been extensively used in many areas of science to analyze the occurrence of observed clusters of events in space. Since this scan statistic is based on highly dependent consecutive subsequences of observed data, accurate approximations for its distributions are of great value. In this article, based on the scanning window representation of the scan statistic, accurate product-type, Poisson and a compound Poisson approximations are investigated. Moreover, accurate approximations for the expected size of the scan statistic are derived. Numerical results are presented to evaluate the performance of the approximations discussed in this article.
Keywords: Compound; Poisson; approximation; Moving; window; detection; Poisson; approximations; Product-type; approximations; Testing; for; randomness; in; two; dimensions (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(02)00122-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:58:y:2002:i:3:p:287-296
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().