EconPapers    
Economics at your fingertips  
 

Rates of uniform convergence of empirical means with mixing processes

Rajeeva L. Karandikar and M. Vidyasagar

Statistics & Probability Letters, 2002, vol. 58, issue 3, 297-307

Abstract: It has been shown previously by Nobel and Dembo (Stat. Probab. Lett. 17 (1993) 169) that, if a family of functions has the property that empirical means based on an i.i.d. process converge uniformly to their values as the number of samples approaches infinity, then continues to have the same property if the i.i.d. process is replaced by a [beta]-mixing process. In this note, this result is extended to the case where the underlying probability is itself not fixed, but varies over a family of measures. Further, explicit upper bounds are derived on the rate at which the empirical means converge to their true values, when the underlying process is [beta]-mixing. These bounds are less conservative than those derived by Yu (Ann. Probab. 22 (1994) 94).

Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(02)00124-4
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:58:y:2002:i:3:p:297-307

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:58:y:2002:i:3:p:297-307