EconPapers    
Economics at your fingertips  
 

Gaussian tail for empirical distributions of MST on random graphs

Sungchul Lee and Zhonggen Su

Statistics & Probability Letters, 2002, vol. 58, issue 4, 363-368

Abstract: Consider the complete graph Kn on n vertices and the n-cube graph Qn on 2n vertices. Suppose independent uniform random edge weights are assigned to each edges in Kn and Qn and let and denote the unique minimal spanning trees on Kn and Qn, respectively. In this paper we obtain the Gaussian tail for the number of edges of and with weight at most t/n.

Keywords: Empirical; distribution; Gaussian; tail; Minimal; spanning; tree (search for similar items in EconPapers)
Date: 2002
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(02)00144-X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:58:y:2002:i:4:p:363-368

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:58:y:2002:i:4:p:363-368