Gaussian tail for empirical distributions of MST on random graphs
Sungchul Lee and
Zhonggen Su
Statistics & Probability Letters, 2002, vol. 58, issue 4, 363-368
Abstract:
Consider the complete graph Kn on n vertices and the n-cube graph Qn on 2n vertices. Suppose independent uniform random edge weights are assigned to each edges in Kn and Qn and let and denote the unique minimal spanning trees on Kn and Qn, respectively. In this paper we obtain the Gaussian tail for the number of edges of and with weight at most t/n.
Keywords: Empirical; distribution; Gaussian; tail; Minimal; spanning; tree (search for similar items in EconPapers)
Date: 2002
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(02)00144-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:58:y:2002:i:4:p:363-368
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().