A functional-algebraic determination of D-optimal designs for trigonometric regression models on a partial circle
Holger Dette,
Viatcheslav B. Melas and
Stefanie Biedermann
Statistics & Probability Letters, 2002, vol. 58, issue 4, 389-397
Abstract:
We investigate the D-optimal design problem in the common trigonometric regression model, where the design space is a partial circle. The task of maximizing the criterion function is transformed into the problem of determining an eigenvalue of a certain matrix via a differential equation approach. Since this eigenvalue is an analytic function of the length of the design space, we can make use of a Taylor expansion to provide a recursive algorithm for its calculation. Finally, this enables us to determine Taylor expansions for the support points of the D-optimal design.
Keywords: Trigonometric; regression; D-optimality; Implicit; function; theorem; Differential; equation (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(02)00152-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:58:y:2002:i:4:p:389-397
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().