On Klass' series criterion for the minimal growth rate of partial maxima
Anant P. Godbole
Statistics & Probability Letters, 1987, vol. 5, issue 3, 235-237
Abstract:
Let X, X1, X,... be i.i.d. random variables and let Mn=max1[less-than-or-equals, slant]j[less-than-or-equals, slant]n Xj. We present a direct martingale-theoretic proof of a theorem of Klass (1985): P(Mn[less-than-or-equals, slant]bn i.o.) = 1 if and only if [Sigma]n=1[infinity] P(X>bn) exp{-nP(X>bn)} = [infinity].
Keywords: partial; maxima; martingale; conditional; Borel-Cantelli; lemma (search for similar items in EconPapers)
Date: 1987
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0167-7152(87)90047-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:5:y:1987:i:3:p:235-237
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().