A law of iterated logarithm for the wavelet transforms of i.i.d. random variables
Haiyan Cai
Statistics & Probability Letters, 2002, vol. 60, issue 1, 121-127
Abstract:
We apply a general result on the law of iterated logarithm to the wavelet transforms of i.i.d. random variables and show that a version of this law holds under some regularity conditions on the wavelet. This result provides asymptotic estimates of the rate of decay of the wavelet coefficients at intermediate scaling levels.
Keywords: Wavelet; transform; Law; of; iterated; logarithm (search for similar items in EconPapers)
Date: 2002
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(02)00290-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:60:y:2002:i:1:p:121-127
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().