EconPapers    
Economics at your fingertips  
 

The finiteness of moments of a stochastic exponential

Bronius Grigelionis and Vigirdas Mackevicius

Statistics & Probability Letters, 2003, vol. 64, issue 3, 243-248

Abstract: It is well known that the stochastic exponential , of a continuous local martingale M has expectation EZt=1 and, thus, is a martingale if (Novikov's condition). We show that, for p>1, EZtp t} 0. As a consequence, we get that the moments of the stochastic exponential of a stochastic integral with respect to a Brownian motion are all finite, provided the integrand is a Brownian functional of linear growth.

Keywords: Stochastic; exponential; Girsanov; theorem (search for similar items in EconPapers)
Date: 2003
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(03)00155-X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:64:y:2003:i:3:p:243-248

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:64:y:2003:i:3:p:243-248