On the asymptotic normality of multistage integrated density derivatives kernel estimators
Carlos Tenreiro
Statistics & Probability Letters, 2003, vol. 64, issue 3, 311-322
Abstract:
The estimation of integrated density derivatives is a crucial problem which arises in data-based methods for choosing the bandwidth of kernel and histogram estimators. In this paper, we establish the asymptotic normality of a multistage kernel estimator of such quantities, by showing that under some regularity conditions on the underlying density function and on the kernels used on the multistage estimation procedure, the multistage kernel estimator with at least one step of estimation is asymptotically equivalent in probability to the kernel estimator with associated optimal bandwidth. An application to kernel density bandwidth selection is also presented. In particular, we conclude that the common used plug-in bandwidth do not attempt the optimal rate of convergence to the optimal bandwidth.
Keywords: Kernel; estimator; Multistage; estimation; Asymptotic; normality; Bandwidth; selection (search for similar items in EconPapers)
Date: 2003
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(03)00176-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:64:y:2003:i:3:p:311-322
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().