On optimal choosing of one of the k best objects
Zdzislaw Porosinski
Statistics & Probability Letters, 2003, vol. 65, issue 4, 419-432
Abstract:
A full-information continuous-time best choice problem is considered. A stream of objects being iid random variables with a known continuous distribution function is observed. The objects appear according to some renewal process independent of objects. The objective is to maximize the probability of selecting of one of the k best objects when observation is perfect, one choice can be made and neither recall nor uncertainty of selection is allowed. The horizon of observation is a positive random variable independent of objects. The natural case of a Poisson renewal process (with intensity [lambda]) and of exponentially distributed horizon (with parameter [mu]) is examined in detail. An optimal stopping rule stops at the first object which is greater than some constant level c(p) depending only on p=[mu]/([mu]+[lambda]). The probability of choosing the proper object P(win) is constant for all natural cases, i.e. when p is small. Simple formulae and numerical values for c(p) and P(win) are obtained. It is interesting that if p tends to 0, P(win) goes to 1 and c(p) goes to 0 at a much slower rate than exponentially fast.
Keywords: Best; choice; problem; Optimal; stopping; Full; information (search for similar items in EconPapers)
Date: 2003
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(03)00296-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:65:y:2003:i:4:p:419-432
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().