EconPapers    
Economics at your fingertips  
 

Extreme values of the tent map process

George Haiman

Statistics & Probability Letters, 2003, vol. 65, issue 4, 451-456

Abstract: Let X0 be uniformly distributed on [0,1] and define the "tent map process" by Xn+1=1-2Xn-1, n[greater-or-equal, slanted]0. Let Mn=max(X1,...,Xn). We obtain the following results: For any integers n and k[greater-or-equal, slanted]1 we havewith the convention Cpq=0 if p 0 we have limk-->[infinity] P{M[[lambda]2k][less-than-or-equals, slant]1-2-k}=e-[lambda] (Theorem 2).

Keywords: Logistic; map; Tent; map; Dynamical; systems; Extremes (search for similar items in EconPapers)
Date: 2003
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(03)00302-X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:65:y:2003:i:4:p:451-456

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:65:y:2003:i:4:p:451-456