On the power of the Kolmogorov test to detect the trend of a Brownian bridge with applications to a change-point problem in regression models
Wolfgang Bischoff,
Enkelejd Hashorva,
Jürg Hüsler and
Frank Miller
Statistics & Probability Letters, 2004, vol. 66, issue 2, 105-115
Abstract:
Given a Brownian bridge B0 with trend g:[0,1]-->[0,[infinity]), Y(z)=g(z)+B0(z),z[set membership, variant][0,1],we are interested in testing H0:g[reverse not equivalent]0 against the alternative K:g>0. For this test problem we study weighted Kolmogorov testswhere c>0 is a suitable constant and w:[0,1]-->[0,[infinity]) is a weight function. To do such an investigation a recent result of the authors on a boundary crossing probability of the Brownian bridge is useful. In case the trend is large enough we show an optimality property for weighted Kolmogorov tests. Furthermore, an additional property for weighted Kolmogorov tests is shown which is useful to find the more favourable weight for specific test problems. Finally, we transfer our results to the change-point problem whether a regression function is or is not constant during a certain period.
Keywords: Brownian; bridge; with; trend; Tests; of; Kolmogorov; type; Regression; models; Change-point; problem (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(03)00265-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:66:y:2004:i:2:p:105-115
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().