A power comparison between nonparametric regression tests
Chunming Zhang and
Holger Dette
Statistics & Probability Letters, 2004, vol. 66, issue 3, 289-301
Abstract:
In this paper, we consider three major types of nonparametric regression tests that are based on kernel and local polynomial smoothing techniques. Their asymptotic power comparisons are established systematically under the fixed and contiguous alternatives, and are also illustrated through nonasymptotic investigations and finite-sample simulation studies.
Keywords: Goodness-of-fit; Local; alternative; Local; polynomial; regression; Power; Smoothing; parameter (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(03)00353-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:66:y:2004:i:3:p:289-301
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().