A note on an equivalence between chi-square and generalized skew-normal distributions
Jiuzhou Wang,
Joseph Boyer and
Marc G. Genton
Statistics & Probability Letters, 2004, vol. 66, issue 4, 395-398
Abstract:
In this note, we establish an equivalence between chi-square and generalized skew-normal distributions. This result is based on a distributional invariance property of even functions in generalized skew-normal random vectors. It extends the chi-square properties related to univariate and multivariate skew-normal distributions.
Keywords: Chi-square; distribution; Invariance; Generalized; skew-normal; distribution (search for similar items in EconPapers)
Date: 2004
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(03)00337-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:66:y:2004:i:4:p:395-398
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().