Estimation of spectral density for seasonal time series models
Dong Wan Shin
Statistics & Probability Letters, 2004, vol. 67, issue 2, 149-159
Abstract:
For estimating spectral densities of stationary seasonal time series processes, a new kernel is proposed. The proposed kernel is of the shape which is in harmony with oscillating patterns of the autocorrelation functions of typical seasonal time series process. Basic properties such as consistency and nonnegativity of the spectral density estimator are discussed. A Monte-Carlo simulation is conducted for multiplicative monthly autoregressive process and moving average process, which reveal that the proposed kernel provides more efficient spectral density estimator than the classical kernels of Bartlett, Parzen, and Tukey-Hanning.
Keywords: Efficiency; Kernel; Spectral; density (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(04)00024-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:67:y:2004:i:2:p:149-159
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().