EconPapers    
Economics at your fingertips  
 

Uniform priors on convex sets improve risk

J. A. Hartigan

Statistics & Probability Letters, 2004, vol. 67, issue 4, 285-288

Abstract: Let X be spherical normal with mean [theta] lying in a closed convex set C with a non-empty interior and a non-empty complement. For the prior distribution uniform over C, the mean squared error risk of the generalized Bayes estimator is less than or equal to that of X for [theta][set membership, variant]C. It is equal to that of X if and only if C is a cone, and [theta] is an apex of the cone.

Keywords: Uniform; priors; Bayes; estimators; Squared; error; loss; Improving; risk; Convex; sets; Multivariate; normal (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(04)00027-6
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:67:y:2004:i:4:p:285-288

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:67:y:2004:i:4:p:285-288