A new method of calibration for the empirical loglikelihood ratio
Min Tsao
Statistics & Probability Letters, 2004, vol. 68, issue 3, 305-314
Abstract:
The Chi-square calibration for the empirical loglikelihood ratio refers to the method of approximating quantiles of the finite sample distribution of the empirical loglikelihood ratio with that of the limiting Chi-square distribution. Empirical likelihood ratio confidence regions are usually computed with the Chi-square calibration. Such Chi-square calibrated confidence regions can have a serious undercoverage problem. This paper examines the undercoverage problem from a finite sample standpoint and proposes a method of calibration which approximates the finite sample distributions with a new family of distributions. The new distributions is another family of sampling distributions arising from the normal distributions and is derived through a simple finite sample similarity between the empirical and parametric likelihoods. The new method of calibration is as easy to use as the Chi-square calibration. It corrects the undercoverage problem of the Chi-square calibration and is consistently more accurate.
Keywords: Confidence; regions; E; distributions; Empirical; loglikelihood; ratio; Hotelling's; T2; distributions; Multivariate; normal; distributions; Undercoverage; problem (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(04)00121-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:68:y:2004:i:3:p:305-314
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().