Asymptotic inference for a nearly unstable sequence of stationary spatial AR models
Sándor Baran,
Gyula Pap and
Martien C. A. van Zuijlen
Statistics & Probability Letters, 2004, vol. 69, issue 1, 53-61
Abstract:
A nearly unstable sequence of stationary spatial autoregressive processes is investigated, where the autoregressive coefficients are equal, and their sum tends to one. It is shown that the limiting distribution of the least-squares estimator for this coefficient is normal and, in contrast to the doubly geometric process, the typical rate of convergence is n-5/4.
Keywords: Autoregressive; model; Asymptotic; normality; Martingale; central; limit; theorem (search for similar items in EconPapers)
Date: 2004
References: View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(04)00158-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:69:y:2004:i:1:p:53-61
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().