Asymptotic expansions for the moments of the Gaussian random walk with two barriers
Tahir Khaniyev and
Zafer Kucuk
Statistics & Probability Letters, 2004, vol. 69, issue 1, 91-103
Abstract:
In this study, the semi-Markovian random walk (X(t)) with a normal distribution of summands and two barriers in the levels 0 and [beta]>0 is considered. Moreover, under some weak assumptions the ergodicity of the process is discussed and the characteristic function of the ergodic distribution of the process X(t) is expressed by means of appropriating one of a boundary functional SN. Using this relation, the exact formulas for the first four moments of ergodic distribution are obtained and the asymptotic expansions are derived with three terms for the one's, as [beta]-->[infinity]. Finally, using the Monte Carlo experiments, the degree of accuracy of obtained approximate formulas to exact one's have been tested.
Keywords: Gaussian; random; walk; Wiener-Hopf; factorization; moments; of; ergodic; distribution; of; process; asymptotic; expansions; ladder; variables (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(04)00173-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:69:y:2004:i:1:p:91-103
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().