On bounding the absolute mean value
Veni Arakelian and
V. Papathanasiou
Statistics & Probability Letters, 2004, vol. 69, issue 4, 447-450
Abstract:
A well-known bound for the absolute value of the mean a function g(X) of a random variable X,E(g(X)), is . Here, we use a sharper bound of Cauchy's inequality, proved by Hovenier (J. Math. Appl. 186 (1994) 156-160), to give upper bounds for the absolute of mean value, E(g(X)). Some examples for particular distributions are also provided.
Keywords: Cauchy; inequality; Truncated; moments (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(04)00198-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:69:y:2004:i:4:p:447-450
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().