Asymptotically efficient estimation of the sparsity function at a point
A. H. Welsh
Statistics & Probability Letters, 1988, vol. 6, issue 6, 427-432
Abstract:
The sparsity function is important in nonparametric inference based on order statistics. In this paper, we consider kernel estimation of the sparsity function. We establish an invariance principle for the kernel estimator and then construct a simple adaptive estimator which we show is asymptotically efficient in the mean squared error sense.
Keywords: efficient; estimation; kernel; mean; squared; error; order; statistics; sparsity; function; weak; convergence (search for similar items in EconPapers)
Date: 1988
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0167-7152(88)90103-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:6:y:1988:i:6:p:427-432
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().