Large deviations and estimation in infinite-dimensional models
W. J. Hall and
Wei-Min Huang
Statistics & Probability Letters, 1988, vol. 6, issue 6, 433-439
Abstract:
Consider a random sample from a statistical model with an unknown, and possibly infinite-dimensional, parameter - e.g., a nonparametric or semiparametric model - and a real-valued functional T of this parameter which is to be estimated. The objective is to develop bounds on the (negative) exponential rate at which consistent estimates converge in probability to T, or, equivalently, lower bounds for the asymptotic effective standard deviation of such estimates - that is, to extend work of R.R. Bahadur from parametric models to more general (semiparametric and nonparametric) models. The approach is to define a finite-dimensional submodel, determine Bahadur's bounds for a finite-dimensional model, and then 'sup' or 'inf' the bounds with respect to ways of defining the submodels; this can be construed as a 'directional approach', the submodels being in a specified 'direction' from a specific model. Extension is made to the estimation of vector-valued and infinite-dimensional functionals T, by expressing consistency in terms of a distance, or, alternatively, by treating classes of real functionals of T. Several examples are presented.
Keywords: consistency; rates; effective; standard; deviation; Kullback-Leibler; information; nonparametric; estimation; semiparametric; estimation (search for similar items in EconPapers)
Date: 1988
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0167-7152(88)90104-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:6:y:1988:i:6:p:433-439
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().