On oscillations of the geometric Brownian motion with time-delayed drift
Alexander Gushchin and
Uwe Küchler
Statistics & Probability Letters, 2004, vol. 70, issue 1, 19-24
Abstract:
The geometric Brownian motion is the solution of a linear stochastic differential equation in the Itô sense. If one adds to the drift term a possible nonlinear time-delayed term and starts with a non-negative initial process then the process generated in this way, may hit zero and may oscillate around zero infinitely many times depending on properties of both the drift terms and the diffusion constant.
Keywords: Geometric; Brownian; motion; Stochastic; delay; differential; equations; Oscillations (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(04)00194-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:70:y:2004:i:1:p:19-24
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().