On the almost sure growth rate of sums of lower negatively dependent nonnegative random variables
Oleg Klesov,
Andrew Rosalsky and
Andrei I. Volodin
Statistics & Probability Letters, 2005, vol. 71, issue 2, 193-202
Abstract:
For a sequence of lower negatively dependent nonnegative random variables Xn,n[greater-or-equal, slanted]1 , conditions are provided under which almost surely where bn,n[greater-or-equal, slanted]1 is a nondecreasing sequence of positive constants. The results are new even when they are specialized to the case of nonnegative independent and identically distributed summands and bn=nr, n[greater-or-equal, slanted]1 where r>0.
Keywords: Sums; of; lower; negatively; dependent; random; variables; Nonnegative; random; variables; Sums; of; independent; and; identically; distributed; random; variables; Almost; sure; growth; rate (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(04)00294-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:71:y:2005:i:2:p:193-202
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().