Bayesian model selection: a predictive approach with losses based on distances L1 and L2
Julián de la Horra and
María Teresa Rodríguez-Bernal
Statistics & Probability Letters, 2005, vol. 71, issue 3, 257-265
Abstract:
A Bayesian model consists of two elements: a sampling model and a prior density. In this paper, we propose a new predictive approach for selecting a Bayesian model through a decision problem. The key idea in the paper is the loss function; we propose to measure the L1 distance (or the squared L2 distance) between the densities we can use for predicting future observations: sampling densities and posterior predictive densities. The method is also applied to the problem of variable selection in a regression model, showing a good behavior.
Keywords: Posterior; predictive; density; Posterior; expected; loss; L1; distance; L2; distance; Bayesian; model; selection; Variable; selection (search for similar items in EconPapers)
Date: 2005
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(04)00307-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:71:y:2005:i:3:p:257-265
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().