Variable selection in generalized linear models with canonical link functions
Man Jin,
Yixin Fang and
Lincheng Zhao
Statistics & Probability Letters, 2005, vol. 71, issue 4, 371-382
Abstract:
This paper studies a class of AIC-like model selection criteria for a generalized linear model with the canonical link. They have the form of , where is the maximized log-likelihood, p is the number of parameters and C is a term depending on the sample size n and satisfying C/n-->0 and as n-->[infinity]. Under suitable conditions, this class of criteria is shown to be strongly consistent. A simulation study was also conducted to assess the finite-sample performance with various choices of C for variable selection in a logit model and a log-linear model.
Keywords: Generalized; linear; model; Canonical; link; function; Information; theoretic; criteria; Model; selection (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(05)00011-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:71:y:2005:i:4:p:371-382
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().