Random walks whose concave majorants often have few faces
Zhihua Qiao and
J. Michael Steele
Statistics & Probability Letters, 2005, vol. 75, issue 2, 97-102
Abstract:
We construct a continuous distribution G such that the number of faces in the smallest concave majorant of the random walk with G-distributed summands will take on each natural number infinitely often with probability one. This investigation is motivated by the fact that the number of faces Fn of the concave majorant of the random walk at time n has the same distribution as the number of records Rn in the sequence of summands up to time n. Since Rn is almost surely asymptotic to , the construction shows that despite the equality of all of the one-dimensional marginals, the almost sure behaviors of the sequences {Rn} and {Fn} may be radically different.
Keywords: Spitzer's; combinatorial; lemma; Random; walk; Convex; hull; Convex; minorant; Concave; majorant (search for similar items in EconPapers)
Date: 2005
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(05)00213-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:75:y:2005:i:2:p:97-102
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().