A new type of parameter estimation algorithm for missing data problems
Petre Stoica,
Luzhou Xu and
Jian Li
Statistics & Probability Letters, 2005, vol. 75, issue 3, 219-229
Abstract:
The expectation-maximization (EM) algorithm is often used in maximum likelihood (ML) estimation problems with missing data. However, EM can be rather slow to converge. In this communication we introduce a new algorithm for parameter estimation problems with missing data, which we call equalization-maximization (EqM) (for reasons to be explained later). We derive the EqM algorithm in a general context and illustrate its use in the specific case of Gaussian autoregressive time series with a varying amount of missing observations. In the presented examples, EqM outperforms EM in terms of computational speed, at a comparable estimation performance.
Keywords: Parameter; estimation; with; missing; data; Maximum; likelihood; Expectation-maximization; Cyclic; maximization (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(05)00227-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:75:y:2005:i:3:p:219-229
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().