EconPapers    
Economics at your fingertips  
 

A novel class of bivariate max-stable distributions

Enkelejd Hashorva

Statistics & Probability Letters, 2006, vol. 76, issue 10, 1047-1055

Abstract: In this paper we consider bivariate triangular arrays given in terms of linear transformations of asymptotically spherical bivariate random vectors. We show under certain restrictions that the componentwise maxima of such arrays is attracted by a bivariate max-stable distribution function with three parameters. This new class of max-stable distributions includes the bivariate max-stable Hüsler-Reiss distribution function for a special choice of parameters.

Keywords: Maxima; of; triangular; arrays; Gumbel; max-domain; of; attraction; Max-stable; distributions; Husler-Reiss; distribution; Weak; convergence (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(05)00445-1
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:76:y:2006:i:10:p:1047-1055

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:76:y:2006:i:10:p:1047-1055