Likelihood-look-ahead inference on the equilibrium distribution of Markov chains
Gilda Garibotti,
John V. Tsimikas and
Joseph Horowitz
Statistics & Probability Letters, 2006, vol. 76, issue 10, 991-1000
Abstract:
We propose a method for statistical inference on the stationary probability measure of a Markov chain with general state space whose transition function belongs to a parametric family. We extend the look-ahead method introduced by Glynn and Henderson to this situation, using maximum likelihood estimation based on data from the observed process. We show the consistency and asymptotic normality of our estimator and construct confidence intervals for the values of the stationary distribution. We illustrate our results with simulation studies of the Lindley process and the AR(1) process.
Keywords: Markov; chain; Maximum; likelihood; Look-ahead; estimation; Simulation; Stationary; distribution (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(05)00438-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:76:y:2006:i:10:p:991-1000
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().