On the extremal dependence coefficient of multivariate distributions
Gabriel Frahm
Statistics & Probability Letters, 2006, vol. 76, issue 14, 1470-1481
Abstract:
A measure called 'extremal dependence coefficient' (EDC) is introduced for studying the asymptotic dependence structure of the minimum and the maximum of a random vector. Some general properties of the EDC are derived and its relation to the tail dependence coefficient is examined. The extremal dependence structure of regularly varying elliptical random vectors is investigated and it is shown that the EDC is only determined by the tail index and by the pseudo-correlation coefficients of the elliptical distribution.
Keywords: Asymptotic; dependence; Copula; Elliptical; distribution; Extremal; dependence; Tail; dependence; coefficient; Tail; index (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(06)00081-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:76:y:2006:i:14:p:1470-1481
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().