Almost sure convergence of Titterington's recursive estimator for mixture models
Shaojun Wang and
Yunxin Zhao
Statistics & Probability Letters, 2006, vol. 76, issue 18, 2001-2006
Abstract:
Titterington proposed a recursive parameter estimation algorithm for finite mixture models. However, due to the well known problem of singularities and multiple maximum, minimum and saddle points that are possible on the likelihood surfaces, convergence analysis has seldom been made in the past years. In this paper, under mild conditions, we show the global convergence of Titterington's recursive estimator and its MAP variant for mixture models of full regular exponential family.
Keywords: Recursive; estimation; Incomplete; data; Mixture; model; Regular; exponential; family; Almost; sure; convergence; Stochastic; approximation (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(06)00184-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:76:y:2006:i:18:p:2001-2006
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().