Dimension reduction via marginal high moments in regression
Xiangrong Yin and
R. Dennis Cook
Statistics & Probability Letters, 2006, vol. 76, issue 4, 393-400
Abstract:
Yin and Cook [2002. Dimension reduction for the conditional k-th moment in regression. J. Roy. Statist. Soc. B 64, 159-175] established a general equivalence between sliced inverse regression (sir) and a marginal moment method called Covk. In this note, we form a new marginal method called phdk and establish a general equivalence between sliced average variance estimation save, and Covk and phdk. We also show that in the population save is the most comprehensive method among all dimension reduction methods using the first two inverse moments. However, no similar relation was found for dimension reduction methods based on third inverse moments.
Keywords: Inverse; regression; phd; Regression; graphics; save (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(05)00311-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:76:y:2006:i:4:p:393-400
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().