Quadratic forms of multivariate skew normal-symmetric distributions
Wen-Jang Huang and
Yan-Hau Chen
Statistics & Probability Letters, 2006, vol. 76, issue 9, 871-879
Abstract:
Following the paper by Gupta and Chang (Multivariate skew-symmetric distributions. Appl. Math. Lett. 16, 643-646 2003.) we generate a multivariate skew normal-symmetric distribution with probability density function of the form fZ(z)=2[phi]p(z;[Omega])G([alpha]'z), where , [phi]p(z;[Omega]) is the p-dimensional normal p.d.f. with zero mean vector and correlation matrix [Omega], and G is taken to be an absolutely continuous function such that G' is symmetric about 0. First we obtain the moment generating function of certain quadratic forms. It is interesting to find that the distributions of some quadratic forms are independent of G. Then the joint moment generating functions of a linear compound and a quadratic form, and two quadratic forms, and conditions for their independence are given. Finally we take G to be one of normal, Laplace, logistic or uniform distribution, and determine the distribution of a special quadratic form for each case.
Keywords: Chi-square; distribution; Independence; Moment; generating; function; Non-normal; models; Quadratic; form; Skew; normal; distribution; Skew; symmetric; distribution (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(05)00403-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:76:y:2006:i:9:p:871-879
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().