An optimal completion of the product limit estimator
Zhiqiang Chen and
Eswar Phadia
Statistics & Probability Letters, 2006, vol. 76, issue 9, 913-919
Abstract:
It is well known that the product limit estimator is undefined beyond the largest observation if it is censored. Some completion methods are suggested in the literature (see e.g. [Efron, 1967. The two sample problem with censored data. Proceedings of the 5th Berkeley Symposium] and [Gill, 1980. Censoring and stochastic integrals. Mathematical Centre Tract No. 124, Mathematisch Centrum, Amsterdam]). In this note, we propose a completion method that is optimal in the sense that the expected value of the integrated squared error loss function is minimized. This method yields an estimator that falls between the above two extremes and possesses the same large sample properties. New bounds for the biases are also derived for the above-mentioned cases.
Keywords: Bias; bound; Censored; data; Kaplan-Meier; estimator; Loss; function; Proportional; hazard; model (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(05)00408-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:76:y:2006:i:9:p:913-919
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().