EconPapers    
Economics at your fingertips  
 

Gibbs and autoregressive Markov processes

Luis E. Nieto-Barajas and Stephen G. Walker

Statistics & Probability Letters, 2007, vol. 77, issue 14, 1479-1485

Abstract: In this paper we show that particular Gibbs sampler Markov processes can be modified to an autoregressive Markov process. The procedure allows the easy derivation of the innovation variables which provide strictly stationary autoregressive processes with fixed marginals. In particular, we provide the innovation variables for beta, gamma and Dirichlet processes.

Keywords: Autoregressive; process; Cadlag; functions; space; Continuous; time; Markov; process; Discrete; time; Markov; process; Lévy; process (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(07)00076-4
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:77:y:2007:i:14:p:1479-1485

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:77:y:2007:i:14:p:1479-1485