A central limit theorem for self-normalized sums of a linear process
Mindaugas Juodis () and
Alfredas Rackauskas
Statistics & Probability Letters, 2007, vol. 77, issue 15, 1535-1541
Abstract:
Let be a linear process, where and [var epsilon]t, t[set membership, variant]Z, are i.i.d. r.v.'s in the domain of attraction of a normal law with zero mean and possibly infinite variance. We prove a central limit theorem for self-normalized sums where is a sum of squares of block-sums of size m, as m and the number of blocks N=n/m tend to infinity.
Keywords: Linear; process; Normal; law; Self-normalization (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(07)00126-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:77:y:2007:i:15:p:1535-1541
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().