Nontransitivity in a class of weighted logrank statistics under nonproportional hazards
Daniel L. Gillen and
Scott S. Emerson
Statistics & Probability Letters, 2007, vol. 77, issue 2, 123-130
Abstract:
Transitivity is an important property of any statistic applied in the setting of multi-arm clinical trials and non-inferiority trials where active-controls are used. The G[rho],[gamma] class of weighted logrank statistics for right-censored survival data as proposed by Fleming and Harrington [1991. Counting Processes and Survival Analysis. Wiley, New York] is often used to improve efficiency in the setting of nonproportional hazards. These statistics utilize a weighting scheme based upon the combined Kaplan-Meier estimate of survival for all comparison groups. Members of this class include the usual logrank statistic as well as the generalized Wilcoxon statistic. It is demonstrated that all useful members of this class exhibit nontransitivity. We propose a general modification of the G[rho],[gamma] statistic which asymptotically achieves transitivity.
Keywords: Censored; data; Clinical; trials; Logrank; statistic; Nonproportional; hazards; Transitivity (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(06)00211-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:77:y:2007:i:2:p:123-130
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().