EconPapers    
Economics at your fingertips  
 

A robust inverse regression estimator

Liqiang Ni and R. Dennis Cook

Statistics & Probability Letters, 2007, vol. 77, issue 3, 343-349

Abstract: A family of dimension reduction methods was developed by Cook and Ni [Sufficient dimension reduction via inverse regression: a minimum discrepancy approach. J. Amer. Statist. Assoc. 100, 410-428.] via minimizing a quadratic objective function. Its optimal member called the inverse regression estimator (IRE) was proposed. However, its calculation involves higher order moments of the predictors. In this article, we propose a robust version of the IRE that only uses second moments of the predictor for estimation and inference, leading to better small sample results.

Keywords: Central; subspace; Inverse; regression; estimator; Sufficient; dimension; reduction (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(06)00242-2
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:77:y:2007:i:3:p:343-349

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:77:y:2007:i:3:p:343-349