EconPapers    
Economics at your fingertips  
 

Asymptotic properties of a double penalized maximum likelihood estimator in logistic regression

Sujuan Gao and Jianzhao Shen

Statistics & Probability Letters, 2007, vol. 77, issue 9, 925-930

Abstract: Maximum likelihood estimates in logistic regression may encounter serious bias or even non-existence with many covariates or with highly correlated covariates. In this paper, we show that a double penalized maximum likelihood estimator is asymptotically consistent in large samples.

Keywords: Logistic; regression; Maximum; likelihood; Penalized; maximum; likelihood; Ridge; regression (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(07)00035-1
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:77:y:2007:i:9:p:925-930

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:77:y:2007:i:9:p:925-930