EconPapers    
Economics at your fingertips  
 

An assumption for the development of bootstrap variants of the Akaike information criterion in mixed models

Junfeng Shang and Joseph E. Cavanaugh

Statistics & Probability Letters, 2008, vol. 78, issue 12, 1422-1429

Abstract: This note provides a proof of a fundamental assumption in the verification of bootstrap AIC variants in mixed models. The assumption links the bootstrap data and the original sample data via the log-likelihood function, and is the key condition used in the validation of the criterion penalty terms. (See Assumption 3 of both Shibata [Shibata, R., 1997. Bootstrap estimate of Kullback-Leibler information for model selection. Statistica Sinica 7, 375-394] and Shang and Cavanaugh [Shang, J., Cavanaugh, J.E., 2008. Bootstrap variants of the Akaike information criterion for mixed model selection. Computational Statistics and Data Analysis 52, 2004-2021]. To state the assumption, let Y and Y* represent the response vector and the corresponding bootstrap sample, respectively. Let [theta] represent the set of parameters for a candidate mixed model, and let denote the corresponding maximum likelihood estimator based on maximizing the likelihood L([theta]|Y). With E* denoting the expectation with respect to the bootstrap distribution of Y*, the assumption asserts that . We prove that the assumption holds under parametric, semiparametric, and nonparametric bootstrapping.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(07)00424-5
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:78:y:2008:i:12:p:1422-1429

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:78:y:2008:i:12:p:1422-1429