Spiking problem in monotone regression: Penalized residual sum of squares
Jayanta Kumar Pal
Statistics & Probability Letters, 2008, vol. 78, issue 12, 1548-1556
Abstract:
We consider the estimation of a monotone function at its end-point, where the least square estimate is inconsistent. The least square criterion is penalized to achieve consistency. The limit distribution for the residual sum of squares is derived, to construct confidence intervals.
Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(08)00010-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:78:y:2008:i:12:p:1548-1556
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().