Central limit theorems for the integrated squared error of derivative estimators
Melanie Birke
Statistics & Probability Letters, 2008, vol. 78, issue 13, 1903-1913
Abstract:
A central limit theorem for the weighted integrated squared error of kernel-type estimators of the first two derivatives of a nonparametric regression function is proved by using results for martingale differences and U-statistics. The results focus on the setting of the Nadaraya-Watson estimator but can also be transferred to local polynomial estimates.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(08)00057-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:78:y:2008:i:13:p:1903-1913
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().