An estimate for the probability of dependent events
Arturas Dubickas
Statistics & Probability Letters, 2008, vol. 78, issue 17, 2839-2843
Abstract:
In this note we prove an estimate for the probability that none of several events will occur provided that some of those events are dependent. This estimate (essentially due to Filaseta, Ford, Konyagin, Pomerance and Yu) can be applied to coverings of by systems of congruences, coverings of by lattices and similar problems. Although this result is similar to the Lovász local lemma, it is independent of it. We will also prove a corollary in the style of the local lemma and show that in some situations our lower bound is stronger than that given by the Lovász lemma. As an illustration, we shall make some computations with an example considered earlier by Chen.
Date: 2008
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(08)00210-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:78:y:2008:i:17:p:2839-2843
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().