Weak convergence of the supremum distance for supersmooth kernel deconvolution
Bert van Es and
Shota Gugushvili
Statistics & Probability Letters, 2008, vol. 78, issue 17, 2932-2938
Abstract:
We derive the asymptotic distribution of the supremum distance of the deconvolution kernel density estimator to its expectation for certain supersmooth deconvolution problems. It turns out that the asymptotics are essentially different from corresponding results for ordinary smooth deconvolution.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(08)00239-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:78:y:2008:i:17:p:2932-2938
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().