Spatial smoothing, Nugget effect and infill asymptotics
Zudi Lu,
Dag Tjøstheim and
Qiwei Yao
Statistics & Probability Letters, 2008, vol. 78, issue 18, 3145-3151
Abstract:
For spatio-temporal regression models with observations taken regularly in time but irregularly over space, we investigate the effect of spatial smoothing on the reduction of variance in estimating both parametric and nonparametric regression functions. The processes concerned are stationary in time but may be nonstationary over space. Our study indicates that under the infill asymptotic framework, the existence of the so-called nugget effect in either regressor process or noise process is necessary for spatial smoothing to reduce the estimation variance. In particular the nugget effect in the regressor process may lead to a faster convergence rate in estimating nonparametric regression functions.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(08)00284-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:78:y:2008:i:18:p:3145-3151
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().